An Extension of the Markov Inequality

B. D. Bojanov
Department of Mathematics, University of Sofia, Sofia 1126, Bulgaria Communicated by T. J. Rivlin

Received May 4, 1981

1. Introduction

Denote by π_{n} the set of algebraic polynomials of degree not exceeding n. Set

$$
\|f\|_{c}:=\max _{-1 \leqslant x \leqslant 1}|f(x)| .
$$

The inequality

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{C} \leqslant n^{2}\|f\|_{C} \quad\left(f \in \pi_{n}\right) \tag{1}
\end{equation*}
$$

is a well-known classical result in approximation theory (see Rivlin [1]); it was proved by A. A. Markov in 1889. Sometimes (1) is written in the form

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{C} \leqslant\left\|T_{n}^{\prime}\right\|_{C}\|f\|_{C} \tag{2}
\end{equation*}
$$

where $T_{n}(x)$ is the Chebyshev polynomial of the first kind, i.e.,

$$
T_{n}(x)=\cos (n \arccos x)
$$

Let us also note the evident fact that

$$
\begin{equation*}
V(f ;[-1,1]) \leqslant V\left(T_{n} ;[-1,1]\right)\|f\|_{c} \quad\left(f \in \pi_{n}\right) \tag{3}
\end{equation*}
$$

where $V(f ;[-1,1])$ denotes the total variation of f in $[-1,1]$. Using the notation

$$
\|f\|_{p}:=\left\{\int_{-1}^{1}|f(x)|^{p} d x\right\}^{1 / p} \quad \text { for } \quad 1 \leqslant p<\infty
$$

one can rewrite (3) as

$$
\left\|f^{\prime}\right\|_{1} \leqslant\left\|T_{n}^{\prime}\right\|_{1}\|f\|_{C}
$$

Here, as in (2), the equality is attained if and only if $f= \pm T_{n}$. So, the famous Chebyshev polynomials T_{n} have a maximal L_{1} and C norm for its first derivative in the set $\left\{f \in \pi_{n}:\|f\|_{C} \leqslant 1\right\}$. Whether T_{n} preserves its extremal role in the corresponding L_{p}-problem

$$
\left\|f^{\prime}\right\|_{p} \rightarrow \sup ; \quad f \in \pi_{n},\|f\|_{C} \leqslant 1,
$$

for $1<p<\infty$, is the central question discussed in the present paper. We give here an affirmative answer to this question showing that

$$
\left\|f^{\prime}\right\|_{p} \leqslant\left\|T_{n}^{\prime}\right\|_{p}\|f\|_{c} \quad\left(f \in \pi_{n}\right)
$$

for each $p \in(1, \infty)$.

2. Auxiliary Lemmas

We prove in this section three propositions which will be needed for the proof of the main result.

Lemma 1. Let $\tau(t)$ be an arbitrary trigonometric polynomial of order n with a uniform norm equal to 1. Suppose that α is a real number from the interval $(-1,1)$. Denote by ξ the point from $(0, \pi / n)$ for which $\cos n \xi=\alpha$. Let η be an arbitrary point from $(-\infty, \infty)$ for which $\tau(\eta)=\alpha$. Then

$$
\begin{equation*}
n \sin n \xi \geqslant\left|\tau^{\prime}(\eta)\right| \tag{4}
\end{equation*}
$$

The equality is attained if and only if $\tau(t)=\cos n t$ (up to translation and multiplication by -1).

Proof. This seems to be a known fact. An anologous statement was used, for instance, by Taikov [2]. For the sake of completeness we sketch here the proof.

The inequality is obvious in the case $\tau^{\prime}(\eta)=0$. Suppose that $\tau^{\prime}(\eta) \neq 0$. Let us assume that (4) does not hold for some τ and η. Then the function

$$
g(t)=\varepsilon_{1} \tau(t-\xi+\eta)-\cos n t, \quad \varepsilon_{1}=-\operatorname{sign} \tau^{\prime}(\eta)
$$

would have three zeros in $[0, \pi / n]$ and (because of the oscillating property of $\cos n t)$ another $2 n-1$ zeros in $[-\pi, 0] \cup[\pi / n, \pi)$. But $g(t)$ is a trigonometric polynomial of order n, thus it has at most $2 n$ zeros in $[-\pi, \pi)$. The contradiction proves the lemma.

We present in the sequel an analogy of Lemma 1 in the algebraic case.

Let $\left\{\theta_{k}\right\}_{0}^{n}$ be the extremal points of $T_{n}(x)$ in $[-1,1]$. It is known (see Rivlin [1]) that $\theta_{0}=-1, \theta_{n}=1$ and

$$
T_{n}\left(\theta_{k}\right)=(-1)^{n-k}, \quad k=0, \ldots, n
$$

Denote by Ω_{n} the set of those polynomials f from the class $\left\{g \in \pi_{n},\|g\|_{C}=1\right\}$ which possess $(m+1)$ points of alternation in $[-1,1]$ ($m=1, \ldots, n$), i.e., for which there exist $m+1$ points $\left\{x_{i}\right\}_{0}^{m},-1=x_{0}<\cdots<$ $x_{m}=1$, such that

$$
f\left(x_{k}\right)=(-1)^{m-k}, \quad k=0, \ldots, m
$$

and $f(x)$ is a monotone function in $\left[x_{k}, x_{k+1}\right], k=0, \ldots, m-1$. Suppose that $f \in \Omega_{n}$. Evidently there is an $i \in\{0, \ldots, m-1\}$ such that $x_{i}<0 \leqslant x_{i+1}$. Consider the partition of $[-1,1]$ into subintervals $\left[x_{0}, x_{1}\right], \ldots,\left[x_{i}, 0\right]$, $\left[0, x_{i+1}\right], \ldots,\left[x_{m-1}, x_{m}\right]$ which we denote, for simplicity, by I_{0}, \ldots, I_{m}, respectively. Introduce the points t_{1} and t_{2} defined by the conditions

$$
\begin{array}{ll}
t_{1} \in\left[\theta_{i}, \theta_{i+1}\right], & T_{n}\left(t_{1}\right)=f(0), \\
t_{2} \in\left[\theta_{i+n-m}, \theta_{i+n-m+1}\right], & T_{n}\left(t_{2}\right)=f(0)
\end{array}
$$

Denote the intervals

$$
\left[\theta_{0}, \theta_{1}\right], \ldots,\left[\theta_{i}, t_{1}\right],\left[t_{2}, \theta_{i+n-m+1}\right], \ldots,\left[\theta_{n-1}, \theta_{n}\right]
$$

by $I_{0}^{*}, \ldots, I_{m}^{*}$, respectively. We shall refer frequently to the correspondence between I_{k} and $I_{k}^{*}, k=0, \ldots, m$.

Lemma 2. Suppose that $f \in \Omega_{n}, \alpha \in(-1,1)$ and $k \in\{0, \ldots, m\}$. Let the points ξ and η be defined by the conditions

$$
\begin{array}{ll}
\xi \in I_{k}^{*}, & T_{n}(\xi)=\alpha \\
\eta \in I_{k}, & f(\eta)=\alpha
\end{array}
$$

Then

$$
\begin{equation*}
\left|T_{n}^{\prime}(\xi)\right| \geqslant\left|f^{\prime}(\eta)\right| \tag{5}
\end{equation*}
$$

and the equality is attained if and only if $f=T_{n}$.
Proof. Suppose that f has $m+1$ points of alternation. If $m=n$ then $f=T_{n}$ and (5) holds. We assume in what follows that $f \neq T_{n}$. Clearly $\eta \neq \pm 1$ since $|f(\pm 1)|=1>|\alpha|$. Suppose that $0 \leqslant \eta<1$. Let the intervals $I=\left[z_{1}, z_{2}\right]$ and $I^{*}=\left[z_{1}^{*}, z_{2}^{*}\right]$ be corresponding and $I \subset[0,1]$. We shall show that

$$
\begin{equation*}
z_{1}<z_{1}^{*}, \quad z_{2} \leqslant z_{2}^{*} \tag{6}
\end{equation*}
$$

Moreover, the equality holds in the case $z_{2}=z_{2}^{*}=1$ only. We apply an induction. If $I=I_{m}$ then $z_{2}=z_{2}^{*}=1$ and clearly $z_{1}<z_{1}^{*}$ since the assumption $z_{1}^{*} \leqslant z_{1}$ implies that $f(x)-T_{n}(x)$ has more than n zeros in $[-1,1]$. Suppose that $I=I_{k}, k<m$. Let us assume that the relations (6) hold for $I=I_{k+1}$. Then $z_{2}<z_{2}^{*}$ since z_{2} is a first end point of I_{k+1}. Suppose that $z_{1}^{*} \leqslant z_{1}$. Then the polynomial $f(x)-T_{n}(x)$ would have two zeros at least in $\left[z_{1}^{*}, z_{2}^{*}\right]$ and $n-1$ other zeros in $\left[-1, z_{1}^{*}\right] \cup\left[z_{2}^{*}, 1\right]$, i.e., more than n. Therefore $z_{1}<z_{1}^{*}$. The assertion (6) is proven.

Now we shall show that $\eta<\xi$. Suppose that $\xi \in I^{*}=\left[z_{1}^{*}, z_{2}^{*}\right]$ and $\eta \in I=\left[z_{1}, z_{2}\right]$. Let us assume that $\xi \leqslant \eta$. Since $z_{1}<z_{1}^{*}$ and $z_{2} \leqslant z_{2}^{*}$, the polynomial $f(x)-T_{n}(x)$ will have at least two zeros in $\left(z_{1}^{*}, z_{2}^{*}\right)$ and $n-1$ zeros in $\left[-1, z_{1}^{*}\right] \cup\left[z_{2}^{*}, 1\right]$, a contradiction. Therefore

$$
\begin{equation*}
0 \leqslant \eta<\xi<1 \tag{7}
\end{equation*}
$$

Consider the trigonometric polynomials

$$
\begin{aligned}
T_{n}(\cos t) & =\cos n t \\
\tau(t) & =f(\cos t)
\end{aligned}
$$

It follows from the evident identities

$$
\begin{aligned}
T_{n}(x) & =\cos (n \arccos x) \\
f(x) & =\tau(\arccos x)
\end{aligned}
$$

that

$$
\begin{align*}
& T_{n}^{\prime}(\xi)=n \sin (n \arccos \xi) \cdot\left(1-\xi^{2}\right)^{-1 / 2} \tag{8}\\
& \tau^{\prime}(\eta)=-\tau^{\prime}(\arccos \eta) \cdot\left(1-\eta^{2}\right)^{-1 / 2} \tag{9}
\end{align*}
$$

But (7) implies

$$
\begin{equation*}
\left(1-\eta^{2}\right)^{-1 / 2}<\left(1-\xi^{2}\right)^{-1 / 2} \tag{10}
\end{equation*}
$$

On the other hand, according to Lemma 1,

$$
\begin{equation*}
|n \sin (n \arccos \xi)|>\left|\tau^{\prime}(\arccos \eta)\right| \tag{11}
\end{equation*}
$$

since

$$
\begin{aligned}
\cos (n \arccos \xi) & =T_{n}(\xi)=\alpha \\
\tau(\arccos \eta) & =f(\eta)=\alpha
\end{aligned}
$$

The assertion of the lemma follows from Eqs. (8)-(11).

The proof is completely similar in the case $-1<\eta \leqslant 0$. The lemma is proved.

Remark 1. The requirement that $f(x)$ is monotone between the points of alternation is not essential. Lemma 2 can be proved in the same fashion without this requirement, assuming that η is an arbitrary point from I_{k} for which $f(\eta)=\alpha$.

Lemma 3. Suppose that $F(x)$ is a convex, increasing function on $[0, \infty)$ and $F(0)=0$. Then

$$
\begin{equation*}
\int_{-1}^{1} F\left(\left|f^{\prime}(x)\right|\right) d x \leqslant \int_{-1}^{1} F\left(\left|T_{n}^{\prime}(x)\right|\right) d x \tag{12}
\end{equation*}
$$

for each $f \in \Omega_{n}$. The equality is attained if and only if $f=T_{n}$.
Proof. We follow the idea used by Taikov [2] in the solution of an analogous problem for trigonometric polynomials.

There is an $M>0$ such that $\left\|f^{\prime}\right\|_{C} \leqslant M\|f\|_{C}$ for each $f \in \pi_{n}$. With every $\alpha \in[0, M]$ we associate the function

$$
\varphi_{\alpha}(x):= \begin{cases}0, & 0 \leqslant x<\alpha \\ x, & \alpha \leqslant x \leqslant M\end{cases}
$$

Divide the interval $[0, M]$ into N equal parts by the points $\alpha_{\kappa}=(k / N) \cdot M$, $k=0, \ldots, N$. Next we construct the function

$$
\Phi_{N}(x)=\sum_{k=1}^{N-1} \beta_{k} \varphi_{\alpha_{k}}(x)
$$

to satisfy the interpolation conditions

$$
\Phi_{N}\left(\alpha_{k}\right)=F\left(\alpha_{k}\right), \quad k=1, \ldots, N-1
$$

Since F is convex and $F(0)=0$, we conclude that $\beta_{k}>0, k=1, \ldots, N-1$. Evidently the functions $\Phi_{N}(x)$ tend uniformly to $F(x)$ in $[0, M]$ as N tends to infinity. Thus, the inequality (12) will be proved if we show that

$$
\begin{equation*}
\int_{-1}^{1} \Phi_{N}\left(\left|f^{\prime}(x)\right|\right) d x \leqslant \int_{-1}^{1} \Phi_{N}\left(\left|T_{n}^{\prime}(x)\right|\right) d x \tag{13}
\end{equation*}
$$

for each $f \in \Omega_{n}$ and every natural number N. But

$$
\begin{equation*}
\int_{-1}^{1} \Phi_{N}\left(\left|f^{\prime}(x)\right|\right) d x=\sum_{k=1}^{N-1} \beta_{k} \int_{-1}^{1} \varphi_{\alpha_{k}}\left(\left|f^{\prime}(x)\right|\right) d x \tag{14}
\end{equation*}
$$

and the coefficients β_{k} are positive. Therefore, in order to prove (13), it suffices to show that

$$
\begin{equation*}
\int_{-1}^{1} \varphi_{\alpha}\left(\left|f^{\prime}(x)\right|\right) d x \leqslant \int_{-1}^{1} \varphi_{\alpha}\left(\left|T_{n}^{\prime}(x)\right|\right) d x \tag{15}
\end{equation*}
$$

for each $\alpha \in(0, M)$ and $f \in \Omega_{n}$. Further, it follows from the definition of $\varphi_{a}(x)$ that

$$
\int_{-1}^{1} \varphi_{\alpha}\left(\left|f^{\prime}(x)\right|\right) d x=\int_{E(\alpha ; \cap)}\left|f^{\prime}(x)\right| d x
$$

where $E(\alpha ; f):=\left\{x \in[-1,1]:\left|f^{\prime}(x)\right| \geqslant \alpha\right\}$. Clearly $E(\alpha ; f)$ consists of nonoverlapping intervals. Suppose that $[a, b]$ is one of these intervals. Since $\alpha>0, f(x)$ is a monotone function in $[a, b]$ and consequently

$$
\int_{a}^{b}\left|f^{\prime}(x)\right| d x=\left|\int_{a}^{b} f^{\prime}(x) d x\right|=|f(b)-f(a)|
$$

Suppose that $[a, b] \in I_{k}$. Let a^{*} and b^{*} be the points from the corresponding interval I_{k}^{*} for which $T_{n}\left(a^{*}\right)=f(a)$ and $T_{n}\left(b^{*}\right)=f(b)$. According to Lemma 2,

$$
\left|T_{n}^{\prime}(x)\right|>\min _{x \in[a, b]}\left|f^{\prime}(x)\right|=\alpha
$$

for each $x \in\left[a^{*}, b^{*}\right]$. Therefore $\left[a^{*}, b^{*}\right] \subset E\left(\alpha ; T_{n}\right)$ and

$$
\begin{aligned}
\int_{a^{*}}^{b^{*}}\left|T_{n}^{\prime}(x)\right| d x & =\left|T_{n}\left(b^{*}\right)-T_{n}\left(a^{*}\right)\right| \\
& =|f(b)-f(a)|=\int_{a}^{b}\left|f^{\prime}(x)\right| d x
\end{aligned}
$$

Then

$$
\int_{E\left(\alpha ; T_{n}\right)}\left|T_{n}^{\prime}(x)\right| d x>\int_{E(\alpha ; \Omega}\left|f^{\prime}(x)\right| d x
$$

and (15) follows. The inequality (12) is proven.
It remains to show that T_{n} is the unique extremal element in Ω_{n}. To this end, observe that

$$
V(f ;[-1,1])=\int_{-1}^{1} \varphi_{0}\left(\left|f^{\prime}(x)\right|\right) d x
$$

Since $V\left(T_{n} ;[-1,1]\right)=2 n$, there exists an $\varepsilon>0$ such that

$$
\int_{-1}^{1} \varphi_{a}\left(\left|T_{n}^{\prime}(x)\right|\right) d x \geqslant 2 n-1
$$

for every $\alpha \in[0, \varepsilon]$. Now, assume that $f \neq T_{n}$. Then $V(f ;[-1,1]) \leqslant 2(n-1)$ (remember that $f \in \Omega_{n}$) and consequently

$$
\begin{align*}
\int_{-1}^{1} \varphi_{a}\left(\left|f^{\prime}(x)\right|\right) d x & <V(f ;[-1,1]) \\
& \leqslant-1+\int_{-1}^{1} \varphi_{a}\left(\left|T_{n}^{\prime}(x)\right|\right) d x \tag{16}
\end{align*}
$$

for $\alpha \in[0, \varepsilon]$. Since $0<\frac{1}{2} F(\varepsilon)<\sum_{\alpha_{k} \measuredangle \epsilon} \beta_{k}$ for sufficiently large N, it follows from (14) and (16) that

$$
\int_{-1}^{1} \Phi_{N}\left(\left|f^{\prime}(x)\right|\right) d x \leqslant-\frac{1}{2} F(\varepsilon)+\int_{-1}^{1} \Phi_{N}\left(\left|T_{n}^{\prime}(x)\right|\right) d x
$$

which yields (12) with strict inequality, as a limit case.

3. Main Result

We prove in this section the central theorem of the present paper.
Theorem 1. Let n be an arbitrary natural number and let $p \in(1, \infty)$. Then

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{p} \leqslant\left\|T_{n}^{\prime}\right\|_{p}\|f\|_{C} \tag{17}
\end{equation*}
$$

for every polynomial $f \in \pi_{n}$. Moreover, the equality is attained if and only if $f= \pm T_{n}$.

Proof. Let the number p be fixed in ($1, \infty$). Suppose that $f \in \pi_{n}$, $\|f\|_{c}=1$ and

$$
\left\|f^{\prime}\right\|_{p}=\sup \left\{\left\|g^{\prime}\right\|_{p}: g \in \pi_{n},\|g\|_{c} \leqslant 1\right\}
$$

Without loss of generality we assume that $f(\infty)=\infty$. The theorem will be proved if we show that $f=T_{n}$. Denote by $\left\{x_{k}\right\}_{1}^{m-1},-1<x_{1}<\cdots<x_{m-1}<1$, the distinct real zeros of $f^{\prime}(x)$ in $(-1,1)$. Evidently $m \leqslant n$. Set, for convenience, $\omega(x)=f^{\prime}(x), x_{0}=-1, x_{m}=1$. We shall show first that

$$
\begin{equation*}
f\left(x_{k}\right)=(-1)^{m-k}, \quad k=0, \ldots, m \tag{18}
\end{equation*}
$$

We investigate the change of the quantities $\left\|f^{\prime}+\varepsilon g_{k}^{\prime}\right\|_{p}$ and $\left\|f+\varepsilon g_{k}\right\|_{c}$ for small ε, where

$$
g_{k}(x)=\left(x^{2}-1\right) \omega(x) /\left(x-x_{k}\right) .
$$

Introduce the function

$$
\sigma_{k}(\varepsilon):=\int_{-1}^{1}\left|f^{\prime}(x)+\varepsilon g_{k}^{\prime}(x)\right|^{p} d x .
$$

Clearly

$$
\begin{equation*}
\sigma_{k}^{\prime}(0)=p \int_{-1}^{1}|\omega(x)|^{p-2} \omega(x) g_{k}^{\prime}(x) d x \tag{19}
\end{equation*}
$$

Our first task is to show that

$$
\begin{equation*}
\sigma_{k}^{\prime}(0)>0, \quad k=0, \ldots, m \tag{20}
\end{equation*}
$$

In the case $k=0$ we have

$$
\begin{aligned}
\sigma_{0}^{\prime}(0) & =p \int_{-1}^{1}|\omega(x)|^{p-2} \omega(x)\{(x-1) \omega(x)\}^{\prime} d x \\
& =p \int_{-1}^{1}|\omega(x)|^{p-2} \omega(x)\left\{\omega(x)+(x-1) \omega^{\prime}(x)\right\} d x \\
& =p \int_{-1}^{1}|\omega(x)|^{p} d x+\int_{-1}^{1}(x-1) d|\omega(x)|^{p} \\
& =(p-1) \int_{-1}^{1}|\omega(x)|^{p} d x+2|\omega(-1)|^{p}>0 .
\end{aligned}
$$

Similarly one proves that $\sigma_{m}^{\prime}(0)>0$. Now suppose that $0<k<m$. It is clear from (19) that $\sigma_{k}^{\prime}(0)<\infty$ because the integrand is a continuous function in $[-1,1]$. Then

$$
\begin{equation*}
\sigma_{k}^{\prime}(0)=\lim _{\delta \rightarrow 0} \mathfrak{T}(\delta), \tag{2}
\end{equation*}
$$

where

$$
\mathfrak{Z}(\delta)=p \int_{\Omega(\delta)}|\omega(x)|^{\boldsymbol{p}-2} \omega(x) g_{k}^{\prime}(x) d x
$$

and

$$
\Omega(\delta):=\left[x_{0}+\delta, x_{1}-\delta\right] \cup\left[x_{1}+\delta, x_{2}-\delta\right] \cup \cdots \cup\left[x_{m-1}+\delta, x_{m}-\delta\right],
$$

$\delta>0$. Let us transform the expression $\mathfrak{I}(\delta)$. After an integration by parts we get

$$
\mathfrak{I}(\delta)=A(\delta)-p \int_{\Omega(\delta)} g_{k}(x) d\left\{|\omega(x)|^{p-2} \omega(x)\right\},
$$

where

$$
A(\delta)=p \sum_{i=0}^{m-1}\left\{\left.g_{k}(x)|\omega(x)|^{p-2} \omega(x)\right|_{x_{i}+\delta} ^{x_{i+1}-\delta}\right\}
$$

It is easily seen that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} A(\delta)=0 \tag{22}
\end{equation*}
$$

Further,

$$
\begin{aligned}
\mathfrak{I}(\delta)= & A(\delta)-p \int_{\Omega(\delta)} \frac{\left(x^{2}-1\right) \omega(x)}{x-x_{k}}(p-1)|\omega(x)|^{p-2} \omega^{\prime}(x) d x \\
= & A(\delta)-(p-1) \int_{\Omega(\delta)} \frac{x^{2}-1}{x-x_{k}} d|\omega(x)|^{p} \\
= & A(\delta)-(p-1) \sum_{i=0}^{m-1}\left\{\frac{x^{2}-1}{x-x_{k}}|\omega(x)|^{p} \left\lvert\, \begin{array}{l}
x_{i+1}-\delta \\
x_{i}+\delta
\end{array}\right.\right\} \\
& +(p-1) \int_{\Omega(\delta)}|\omega(x)|^{p}\left\{1+\frac{1-x_{k}^{2}}{\left(x-x_{k}\right)^{2}}\right\} d x,
\end{aligned}
$$

Now taking into account (21) and (22) we get (20) as a limit case.
We observe that there exist a number $\varepsilon_{0}>0$ and a constant $c>0$ such that

$$
\begin{equation*}
\left\|f^{\prime}+\varepsilon g_{k}^{\prime}\right\|_{p} \geqslant\left\|f^{\prime}\right\|_{p}+c \varepsilon \tag{23}
\end{equation*}
$$

for every $\varepsilon \in\left[0, \varepsilon_{0}\right]$. This follows immediately from the inequality (20) and the Taylor expansion with respect to ε of the function $\int_{-1}^{1}\left|f^{\prime}(x)+\varepsilon g_{k}^{\prime}(x)\right|^{p} d x$. Now let us assume that (18) is not true. Then there exists an $x_{k} \in\left\{x_{0}, \ldots, x_{m}\right\}$ such that $\left|f\left(x_{k}\right)\right|<1$. Therefore $\left|f(x)+\varepsilon g_{k}(x)\right|<1$ for each x from a neighborhood of x_{k}, provided ε is sufficiently small. So, in order to estimate the norm $\left\|f+\varepsilon g_{k}\right\|_{C}$ we have to investigate the function $f(x)+\varepsilon g_{k}(x)$ near the points $x_{i}, i \neq k$, only. Since $g_{k}\left(x_{i}\right)=0$ for $i \neq k$, it is not difficult to verify that

$$
\begin{equation*}
\left\|f+\varepsilon g_{k}\right\|_{C}=\|f\|_{C}+\varepsilon \delta(\varepsilon) \tag{24}
\end{equation*}
$$

with some function $\delta(\varepsilon)$ which tends to zero as $\varepsilon \rightarrow 0$. Consider the polynomial

$$
\psi_{\epsilon}(x)=\left[f(x)+\varepsilon g_{k}(x)\right] / /\left\|f+\varepsilon g_{k}\right\|_{c} .
$$

Obviously $\left\|\psi_{\epsilon}\right\|_{C}=1$. In addition, it follows from (23) and (24) that

$$
\begin{aligned}
\left\|\psi_{\epsilon}^{\prime}\right\|_{p} & \geqslant\left[\left\|f^{\prime}\right\|_{p}+c \varepsilon\right] /[1+\varepsilon \delta(\varepsilon)] \\
& =\left\|f^{\prime}\right\|_{p}+\varepsilon\left[c-\delta(\varepsilon)\left\|f^{\prime}\right\|_{p} / /[1+\varepsilon \delta(\varepsilon)]\right. \\
& >\left\|f^{\prime}\right\|_{p}
\end{aligned}
$$

for sufficiently small positive ε. This contradicts the assumption that f is an extremal element. Therefore $\left|f\left(x_{k}\right)\right|=1$ for each $k=0, \ldots, m$ and our claim (18) follows from the choice of the points x_{1}, \ldots, x_{m-1} as all distinct zeros of $f^{\prime}(x)$ in $(-1,1)$. Observe that f is a monotone function between two successive points x_{k} and $x_{k+1}, k=0, \ldots, m-1$. Therefore $f \in \Omega_{n}$. So, we proved that if f is an extremal polynomial, then f must belong to Ω_{n}. It remains to note that the function $F(x)=|x|^{p}$ is strictly increasing and convex in $[0, \infty)$ for $0<p<\infty$ and $F(0)=0$. The proof is completed by applying Lemma 3.

It is very likely that

$$
\left\|f^{(k)}\right\|_{p} \leqslant\left\|T_{n}^{(k)}\right\|_{p}\|f\|_{C}
$$

for each $f \in \pi_{n}, 1 \leqslant p \leqslant \infty$ and $k \in\{0, \ldots, n\}$. In any case the conjecture is true for $k=n, 1 \leqslant p \leqslant \infty$ and for $k \in\{0, \ldots, n\}, p=\infty$.

References

1. T. J. Rivlin, "The Chebyshev Polynomials," Wiley, New York, 1974.
2. L. V. Taikov, An extension of S. N. Bernstein's inequality, Trudy Mat. Inst. Steklov, v., 78 (1965), 43-47.
