An Extension of the Markov Inequality

B. D. BOJANOV

Department of Mathematics, University of Sofia, Sofia 1126, Bulgaria

Communicated by T. J. Rivlin

Received May 4, 1981

1. Introduction

Denote by π_n the set of algebraic polynomials of degree not exceeding n. Set

$$||f||_C := \max_{-1 \leqslant x \leqslant 1} |f(x)|.$$

The inequality

$$||f'||_C \le n^2 ||f||_C \qquad (f \in \pi_n),$$
 (1)

is a well-known classical result in approximation theory (see Rivlin [1]); it was proved by A. A. Markov in 1889. Sometimes (1) is written in the form

$$||f'||_C \le ||T'_n||_C ||f||_C,$$
 (2)

where $T_n(x)$ is the Chebyshev polynomial of the first kind, i.e.,

$$T_n(x) = \cos(n \arccos x).$$

Let us also note the evident fact that

$$V(f; [-1, 1]) \leqslant V(T_n; [-1, 1]) \| f \|_{\mathcal{C}} \qquad (f \in \pi_n), \tag{3}$$

where V(f; [-1, 1]) denotes the total variation of f in [-1, 1]. Using the notation

$$||f||_p := \left\{ \int_{-1}^1 |f(x)|^p dx \right\}^{1/p} \quad \text{for} \quad 1 \leqslant p < \infty,$$

one can rewrite (3) as

$$||f'||_1 \leqslant ||T'_n||_1 ||f||_C.$$
181

Here, as in (2), the equality is attained if and only if $f = \pm T_n$. So, the famous Chebyshev polynomials T_n have a maximal L_1 and C norm for its first derivative in the set $\{f \in \pi_n : \|f\|_C \le 1\}$. Whether T_n preserves its extremal role in the corresponding L_p -problem

$$||f'||_p \to \sup; f \in \pi_n, ||f||_C \le 1,$$

for 1 , is the central question discussed in the present paper. We give here an affirmative answer to this question showing that

$$||f'||_p \le ||T'_n||_p ||f||_C \quad (f \in \pi_n),$$

for each $p \in (1, \infty)$.

2. Auxiliary Lemmas

We prove in this section three propositions which will be needed for the proof of the main result.

LEMMA 1. Let $\tau(t)$ be an arbitrary trigonometric polynomial of order n with a uniform norm equal to 1. Suppose that α is a real number from the interval (-1, 1). Denote by ξ the point from $(0, \pi/n)$ for which $\cos n\xi = \alpha$. Let η be an arbitrary point from $(-\infty, \infty)$ for which $\tau(\eta) = \alpha$. Then

$$n\sin n\xi \geqslant |\tau'(\eta)|. \tag{4}$$

The equality is attained if and only if $\tau(t) = \cos nt$ (up to translation and multiplication by -1).

Proof. This seems to be a known fact. An anologous statement was used, for instance, by Taikov [2]. For the sake of completeness we sketch here the proof.

The inequality is obvious in the case $\tau'(\eta) = 0$. Suppose that $\tau'(\eta) \neq 0$. Let us assume that (4) does not hold for some τ and η . Then the function

$$g(t) = \varepsilon_1 \tau(t - \xi + \eta) - \cos nt, \qquad \varepsilon_1 = -\operatorname{sign} \tau'(\eta),$$

would have three zeros in $[0, \pi/n]$ and (because of the oscillating property of $\cos nt$) another 2n-1 zeros in $[-\pi, 0] \cup [\pi/n, \pi)$. But g(t) is a trigonometric polynomial of order n, thus it has at most 2n zeros in $[-\pi, \pi)$. The contradiction proves the lemma.

We present in the sequel an analogy of Lemma 1 in the algebraic case.

Let $\{\theta_k\}_0^n$ be the extremal points of $T_n(x)$ in [-1, 1]. It is known (see Rivlin [1]) that $\theta_0 = -1$, $\theta_n = 1$ and

$$T_n(\theta_k) = (-1)^{n-k}, \qquad k = 0,..., n.$$

Denote by Ω_n the set of those polynomials f from the class $\{g \in \pi_n, \|g\|_C = 1\}$ which possess (m+1) points of alternation in [-1, 1] (m=1,...,n), i.e., for which there exist m+1 points $\{x_i\}_0^m, -1 = x_0 < \cdots < x_m = 1$, such that

$$f(x_k) = (-1)^{m-k}, \qquad k = 0,..., m,$$

and f(x) is a monotone function in $[x_k, x_{k+1}]$, k = 0, ..., m-1. Suppose that $f \in \Omega_n$. Evidently there is an $i \in \{0, ..., m-1\}$ such that $x_i < 0 \leqslant x_{i+1}$. Consider the partition of [-1, 1] into subintervals $[x_0, x_1], ..., [x_i, 0]$, $[0, x_{i+1}], ..., [x_{m-1}, x_m]$ which we denote, for simplicity, by $I_0, ..., I_m$, respectively. Introduce the points t_1 and t_2 defined by the conditions

$$t_1 \in [\theta_i, \theta_{i+1}],$$
 $T_n(t_1) = f(0),$
 $t_2 \in [\theta_{i+n-m}, \theta_{i+n-m+1}],$ $T_n(t_2) = f(0).$

Denote the intervals

$$[\theta_0, \theta_1], ..., [\theta_i, t_1], [t_2, \theta_{i+n-m+1}], ..., [\theta_{n-1}, \theta_n]$$

by $I_0^*,...,I_m^*$, respectively. We shall refer frequently to the correspondence between I_k and I_k^* , k=0,...,m.

LEMMA 2. Suppose that $f \in \Omega_n$, $\alpha \in (-1, 1)$ and $k \in \{0,..., m\}$. Let the points ξ and η be defined by the conditions

$$\xi \in I_k^*, \qquad T_n(\xi) = \alpha,$$

 $\eta \in I_k, \qquad f(\eta) = \alpha.$

Then

$$|T_n'(\xi)| \geqslant |f'(\eta)| \tag{5}$$

and the equality is attained if and only if $f = T_n$.

Proof. Suppose that f has m+1 points of alternation. If m=n then $f=T_n$ and (5) holds. We assume in what follows that $f \neq T_n$. Clearly $\eta \neq \pm 1$ since $|f(\pm 1)| = 1 > |\alpha|$. Suppose that $0 \le \eta < 1$. Let the intervals $I = [z_1, z_2]$ and $I^* = [z_1^*, z_2^*]$ be corresponding and $I \subset [0, 1]$. We shall show that

$$z_1 < z_1^*, \qquad z_2 \leqslant z_2^*.$$
 (6)

Moreover, the equality holds in the case $z_2=z_2^*=1$ only. We apply an induction. If $I=I_m$ then $z_2=z_2^*=1$ and clearly $z_1< z_1^*$ since the assumption $z_1^*\leqslant z_1$ implies that $f(x)-T_n(x)$ has more than n zeros in [-1,1]. Suppose that $I=I_k$, k< m. Let us assume that the relations (6) hold for $I=I_{k+1}$. Then $z_2< z_2^*$ since z_2 is a first end point of I_{k+1} . Suppose that $z_1^*\leqslant z_1$. Then the polynomial $f(x)-T_n(x)$ would have two zeros at least in $[z_1^*,z_2^*]$ and n-1 other zeros in $[-1,z_1^*]\cup [z_2^*,1]$, i.e., more than n. Therefore $z_1< z_1^*$. The assertion (6) is proven.

Now we shall show that $\eta < \xi$. Suppose that $\xi \in I^* = [z_1^*, z_2^*]$ and $\eta \in I = [z_1, z_2]$. Let us assume that $\xi \leqslant \eta$. Since $z_1 < z_1^*$ and $z_2 \leqslant z_2^*$, the polynomial $f(x) - T_n(x)$ will have at least two zeros in (z_1^*, z_2^*) and n-1 zeros in $[-1, z_1^*] \cup [z_2^*, 1]$, a contradiction. Therefore

$$0 \leqslant \eta < \xi < 1. \tag{7}$$

Consider the trigonometric polynomials

$$T_n(\cos t) = \cos nt,$$

 $\tau(t) = f(\cos t).$

It follows from the evident identities

$$T_n(x) = \cos(n \arccos x),$$

 $f(x) = \tau(\arccos x)$

that

$$T'_n(\xi) = n \sin(n \arccos \xi) \cdot (1 - \xi^2)^{-1/2},$$
 (8)

$$\tau'(\eta) = -\tau'(\arccos \eta) \cdot (1 - \eta^2)^{-1/2}.$$
 (9)

But (7) implies

$$(1 - \eta^2)^{-1/2} < (1 - \xi^2)^{-1/2}. \tag{10}$$

On the other hand, according to Lemma 1,

$$|n\sin(n\arccos\xi)| > |\tau'(\arccos\eta)|$$
 (11)

since

$$cos(n \operatorname{arccos} \xi) = T_n(\xi) = \alpha,$$

 $\tau(\operatorname{arccos} \eta) = f(\eta) = \alpha.$

The assertion of the lemma follows from Eqs. (8)-(11).

The proof is completely similar in the case $-1 < \eta \le 0$. The lemma is proved.

Remark 1. The requirement that f(x) is monotone between the points of alternation is not essential. Lemma 2 can be proved in the same fashion without this requirement, assuming that η is an arbitrary point from I_k for which $f(\eta) = \alpha$.

LEMMA 3. Suppose that F(x) is a convex, increasing function on $[0, \infty)$ and F(0) = 0. Then

$$\int_{-1}^{1} F(|f'(x)|) \, dx \leqslant \int_{-1}^{1} F(|T'_n(x)|) \, dx \tag{12}$$

for each $f \in \Omega_n$. The equality is attained if and only if $f = T_n$.

Proof. We follow the idea used by Taikov [2] in the solution of an analogous problem for trigonometric polynomials.

There is an M > 0 such that $||f'||_C \le M ||f||_C$ for each $f \in \pi_n$. With every $\alpha \in [0, M]$ we associate the function

$$\varphi_{\alpha}(x) := \begin{cases} 0, & 0 \leqslant x < \alpha, \\ x, & \alpha \leqslant x \leqslant M. \end{cases}$$

Divide the interval [0, M] into N equal parts by the points $\alpha_{\kappa} = (k/N) \cdot M$, k = 0,..., N. Next we construct the function

$$\boldsymbol{\Phi}_{N}(x) = \sum_{k=1}^{N-1} \beta_{k} \varphi_{\alpha_{k}}(x)$$

to satisfy the interpolation conditions

$$\Phi_N(\alpha_k) = F(\alpha_k), \qquad k = 1,...,N-1.$$

Since F is convex and F(0) = 0, we conclude that $\beta_k > 0$, k = 1,..., N-1. Evidently the functions $\Phi_N(x)$ tend uniformly to F(x) in [0, M] as N tends to infinity. Thus, the inequality (12) will be proved if we show that

$$\int_{-1}^{1} \Phi_{N}(|f'(x)|) dx \leqslant \int_{-1}^{1} \Phi_{N}(|T'_{n}(x)|) dx$$
 (13)

for each $f \in \Omega_n$ and every natural number N. But

$$\int_{-1}^{1} \boldsymbol{\Phi}_{N}(|f'(x)|) \, dx = \sum_{k=1}^{N-1} \beta_{k} \int_{-1}^{1} \varphi_{\alpha_{k}}(|f'(x)|) \, dx \tag{14}$$

and the coefficients β_k are positive. Therefore, in order to prove (13), it suffices to show that

$$\int_{-1}^{1} \varphi_{\alpha}(|f'(x)|) \, dx \leqslant \int_{-1}^{1} \varphi_{\alpha}(|T'_{n}(x)|) \, dx \tag{15}$$

for each $\alpha \in (0, M)$ and $f \in \Omega_n$. Further, it follows from the definition of $\varphi_{\alpha}(x)$ that

$$\int_{-1}^{1} \varphi_{\alpha}(|f'(x)|) dx = \int_{E(\alpha;0)} |f'(x)| dx,$$

where $E(\alpha; f) := \{x \in [-1, 1] : |f'(x)| \ge \alpha\}$. Clearly $E(\alpha; f)$ consists of non-overlapping intervals. Suppose that [a, b] is one of these intervals. Since $\alpha > 0$, f(x) is a monotone function in [a, b] and consequently

$$\int_{a}^{b} |f'(x)| dx = \left| \int_{a}^{b} f'(x) dx \right| = |f(b) - f(a)|.$$

Suppose that $[a, b] \in I_k$. Let a^* and b^* be the points from the corresponding interval I_k^* for which $T_n(a^*) = f(a)$ and $T_n(b^*) = f(b)$. According to Lemma 2,

$$|T'_n(x)| > \min_{x \in [a, b]} |f'(x)| = \alpha$$

for each $x \in [a^*, b^*]$. Therefore $[a^*, b^*] \subset E(\alpha; T_n)$ and

$$\int_{a^*}^{b^*} |T'_n(x)| \, dx = |T_n(b^*) - T_n(a^*)|$$

$$= |f(b) - f(a)| = \int_{a}^{b} |f'(x)| \, dx.$$

Then

$$\int_{E(\alpha;T_n)} |T'_n(x)| dx > \int_{E(\alpha;f)} |f'(x)| dx$$

and (15) follows. The inequality (12) is proven.

It remains to show that T_n is the unique extremal element in Ω_n . To this end, observe that

$$V(f; [-1, 1]) = \int_{-1}^{1} \varphi_0(|f'(x)|) dx.$$

Since $V(T_n; [-1, 1]) = 2n$, there exists an $\varepsilon > 0$ such that

$$\int_{-1}^{1} \varphi_{\alpha}(|T'_{n}(x)|) dx \geqslant 2n - 1$$

for every $\alpha \in [0, \varepsilon]$. Now, assume that $f \neq T_n$. Then $V(f; [-1, 1]) \leq 2(n-1)$ (remember that $f \in \Omega_n$) and consequently

$$\int_{-1}^{1} \varphi_{\alpha}(|f'(x)|) dx < V(f; [-1, 1])$$

$$\leq -1 + \int_{-1}^{1} \varphi_{\alpha}(|T'_{n}(x)|) dx$$
(16)

for $\alpha \in [0, \varepsilon]$. Since $0 < \frac{1}{2}F(\varepsilon) < \sum_{\alpha_k \le \varepsilon} \beta_k$ for sufficiently large N, it follows from (14) and (16) that

$$\int_{-1}^{1} \boldsymbol{\Phi}_{N}(|f'(x)|) \, dx \leqslant -\frac{1}{2}F(\varepsilon) + \int_{-1}^{1} \boldsymbol{\Phi}_{N}(|T'_{n}(x)|) \, dx$$

which yields (12) with strict inequality, as a limit case.

3. MAIN RESULT

We prove in this section the central theorem of the present paper.

THEOREM 1. Let n be an arbitrary natural number and let $p \in (1, \infty)$. Then

$$||f'||_{p} \leqslant ||T'_{n}||_{p} ||f||_{C} \tag{17}$$

for every polynomial $f \in \pi_n$. Moreover, the equality is attained if and only if $f = \pm T_n$.

Proof. Let the number p be fixed in $(1, \infty)$. Suppose that $f \in \pi_n$, $||f||_C = 1$ and

$$||f'||_p = \sup\{||g'||_p : g \in \pi_n, ||g||_C \le 1\}.$$

Without loss of generality we assume that $f(\infty) = \infty$. The theorem will be proved if we show that $f = T_n$. Denote by $\{x_k\}_1^{m-1}$, $-1 < x_1 < \cdots < x_{m-1} < 1$, the distinct real zeros of f'(x) in (-1, 1). Evidently $m \le n$. Set, for convenience, $\omega(x) = f'(x)$, $x_0 = -1$, $x_m = 1$. We shall show first that

$$f(x_k) = (-1)^{m-k}, \qquad k = 0,..., m.$$
 (18)

We investigate the change of the quantities $||f' + \varepsilon g'_k||_p$ and $||f + \varepsilon g_k||_C$ for small ε , where

$$g_k(x) = (x^2 - 1) \omega(x)/(x - x_k).$$

Introduce the function

$$\sigma_k(\varepsilon) := \int_{-1}^1 |f'(x) + \varepsilon g'_k(x)|^p dx.$$

Clearly

$$\sigma'_{k}(0) = p \int_{-1}^{1} |\omega(x)|^{p-2} \omega(x) g'_{k}(x) dx.$$
 (19)

Our first task is to show that

$$\sigma'_k(0) > 0, \qquad k = 0, ..., m.$$
 (20)

In the case k = 0 we have

$$\sigma_0'(0) = p \int_{-1}^1 |\omega(x)|^{p-2} \, \omega(x) \{ (x-1) \, \omega(x) \}' \, dx$$

$$= p \int_{-1}^1 |\omega(x)|^{p-2} \, \omega(x) \{ \omega(x) + (x-1) \, \omega'(x) \} \, dx$$

$$= p \int_{-1}^1 |\omega(x)|^p \, dx + \int_{-1}^1 (x-1) \, d|\omega(x)|^p$$

$$= (p-1) \int_{-1}^1 |\omega(x)|^p \, dx + 2 \, |\omega(-1)|^p > 0.$$

Similarly one proves that $\sigma'_m(0) > 0$. Now suppose that 0 < k < m. It is clear from (19) that $\sigma'_k(0) < \infty$ because the integrand is a continuous function in [-1, 1]. Then

$$\sigma'_{k}(0) = \lim_{\delta \to 0} \mathfrak{T}(\delta), \tag{21}$$

where

$$\mathfrak{T}(\delta) = p \int_{Q(\delta)} |\omega(x)|^{p-2} \, \omega(x) \, g'_k(x) \, dx$$

and
$$\Omega(\delta) := [x_0 + \delta, x_1 - \delta] \cup [x_1 + \delta, x_2 - \delta] \cup \cdots \cup [x_{m-1} + \delta, x_m - \delta],$$

 $\delta > 0$. Let us transform the expression $\mathfrak{T}(\delta)$. After an integration by parts we get

$$\mathfrak{T}(\delta) = A(\delta) - p \int_{\Omega(\delta)} g_k(x) d\{|\omega(x)|^{p-2} \omega(x)\},\,$$

where

$$A(\delta) = p \sum_{i=0}^{m-1} \{ g_k(x) |\omega(x)|^{p-2} \omega(x) |x_{i+1}|^{-\delta} \}.$$

It is easily seen that

$$\lim_{\delta \to 0} A(\delta) = 0. \tag{22}$$

Further,

$$\mathfrak{T}(\delta) = A(\delta) - p \int_{\Omega(\delta)} \frac{(x^2 - 1) \omega(x)}{x - x_k} (p - 1) |\omega(x)|^{p - 2} \omega'(x) dx$$

$$= A(\delta) - (p - 1) \int_{\Omega(\delta)} \frac{x^2 - 1}{x - x_k} d|\omega(x)|^p$$

$$= A(\delta) - (p - 1) \sum_{i=0}^{m-1} \left\{ \frac{x^2 - 1}{x - x_k} |\omega(x)|^p \, \middle| \, \frac{x_{i+1} - \delta}{x_i + \delta} \right\}$$

$$+ (p - 1) \int_{\Omega(\delta)} |\omega(x)|^p \left\{ 1 + \frac{1 - x_k^2}{(x - x_k)^2} \right\} dx,$$

Now taking into account (21) and (22) we get (20) as a limit case.

We observe that there exist a number $\varepsilon_0>0$ and a constant c>0 such that

$$||f' + \varepsilon g_k'||_p \geqslant ||f'||_p + c\varepsilon \tag{23}$$

for every $\varepsilon \in [0, \varepsilon_0]$. This follows immediately from the inequality (20) and the Taylor expansion with respect to ε of the function $\int_{-1}^{1} |f'(x) + \varepsilon g_k'(x)|^p dx$. Now let us assume that (18) is not true. Then there exists an $x_k \in \{x_0, ..., x_m\}$ such that $|f(x_k)| < 1$. Therefore $|f(x) + \varepsilon g_k(x)| < 1$ for each x from a neighborhood of x_k , provided ε is sufficiently small. So, in order to estimate the norm $||f + \varepsilon g_k||_C$ we have to investigate the function $f(x) + \varepsilon g_k(x)$ near the points x_i , $i \neq k$, only. Since $g_k(x_i) = 0$ for $i \neq k$, it is not difficult to verify that

$$||f + \varepsilon g_k||_C = ||f||_C + \varepsilon \delta(\varepsilon)$$
 (24)

with some function $\delta(\varepsilon)$ which tends to zero as $\varepsilon \to 0$. Consider the polynomial

$$\psi_{\epsilon}(x) = [f(x) + \epsilon g_k(x)] / ||f + \epsilon g_k||_{C}.$$

Obviously $\|\psi_{\epsilon}\|_{C} = 1$. In addition, it follows from (23) and (24) that

$$\begin{split} \|\psi_{\epsilon}'\|_{p} &\geqslant [\|f'\|_{p} + c\varepsilon]/[1 + \varepsilon\delta(\varepsilon)] \\ &= \|f'\|_{p} + \varepsilon[c - \delta(\varepsilon)\|f'\|_{p}]/[1 + \varepsilon\delta(\varepsilon)] \\ &> \|f'\|_{p} \end{split}$$

for sufficiently small positive ε . This contradicts the assumption that f is an extremal element. Therefore $|f(x_k)|=1$ for each k=0,...,m and our claim (18) follows from the choice of the points $x_1,...,x_{m-1}$ as all distinct zeros of f'(x) in (-1,1). Observe that f is a monotone function between two successive points x_k and x_{k+1} , k=0,...,m-1. Therefore $f \in \Omega_n$. So, we proved that if f is an extremal polynomial, then f must belong to Ω_n . It remains to note that the function $F(x)=|x|^p$ is strictly increasing and convex in $[0,\infty)$ for 0 and <math>F(0)=0. The proof is completed by applying Lemma 3.

It is very likely that

$$||f^{(k)}||_p \leq ||T_n^{(k)}||_p ||f||_C$$

for each $f \in \pi_n$, $1 \le p \le \infty$ and $k \in \{0,...,n\}$. In any case the conjecture is true for k = n, $1 \le p \le \infty$ and for $k \in \{0,...,n\}$, $p = \infty$.

REFERENCES

- 1. T. J. RIVLIN, "The Chebyshev Polynomials," Wiley, New York, 1974.
- L. V. TAIKOV, An extension of S. N. Bernstein's inequality, Trudy Mat. Inst. Steklov, v., 78 (1965), 43-47.